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Uncertainty arises in fields such as computer science, physics, finance and engineering just to name a few such areas. Fuzzy sets, Fuzzy arithmetic, and Fuzzy operations are useful tools for dealing with uncertainty. This article presents the application of a system of a hybrid set of fuzzy numbers known as Linear Fuzzy Integers to the solution of Fuzzy Linear Congruence. The Linear Fuzzy Integers are presented after an illustration of the parent set, Linear Fuzzy Reals. Fuzzy Linear Congruences and the validity of its solution in the Linear Fuzzy Integer environment is shown by both illustration and verified by proof.   
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1.	Introduction *Modular arithmetic is used in many applications. Linear congruence, a specific modulo equation, is often used in cryptography. Because of this, finding solutions to crisp linear congruence has been studied extensively. However, uncertainty arises because of human error, computer error or simply because of the unknown. According to Schjaer-Johnson (2002), when only uncertain information is available decision-making calls for more complex methods of representation and calculation. Thus in cryptography where uncertain information occurs, fuzzy numbers is a useful tool. In some cases, our use of fuzzy numbers may simply provide for greater efficiency. For instance, Golic (2005) states that linear recurring truncated integer sequences are predictable. This is natural since integers are a fully ordered set. Although predictability is welcomed in some areas of mathematics, it is an unwelcomed phenomenon in certain situations of cryptanalysis. In this paper we will present Linear Fuzzy Integers, a set of numbers with both properties of real numbers and of interval numbers. We will then find the solution(s) to a linear congruence using the hybrid numbers as an environment. The hybrid set of numbers are denoted as Linear Fuzzy Real numbers (LFR). Then we will briefly present the set of Linear Fuzzy Integers (LFZ). This set is a subset of LFR. Because of the hybrid nature of LFZ, fuzzy linear congruence can be solved in a similar way as its crisp counterpart.  Fuzzy sets were initially introduced by Bellman and Zadeh (1970). Neggers and Kim (2001) 
                                                 * Corresponding Author.  Email Address: frogers@uwa.edu (F. Rogers) 

researched fuzzy posets. Neggers and Kim (2007) also created Linear Fuzzy Real numbers. Linear Fuzzy Real numbers were used by Monk (2001) and Prevo (2002) in the study of fuzzy random variables. Linear Fuzzy Real numbers were also used by Rogers (2008) to optimize the primal problems of linear programs with fuzzy constraints Rogers.  The set of LFR is a set that shows intermediate properties which are unique to the set and not to those of either the real numbers or the “general” fuzzy numbers. Because of the unique properties of LFR and thus LFZ, we can solve fuzzy linear congruences using known methods. This paper is outlined as follows. Operations on LFR are considered in Section 2. In Section 3, an introduction of the LFZ, a method of solution to fuzzy linear congruence and examples are considered. In Section 4, applications to cryptography and future research are considered. 
2.	Linear	fuzzy	real	numbers	Considering the real numbers R, one way to associate a fuzzy number with a fuzzy subset of real numbers is as a function ߤ ∶ ܴ → [0,1], where the value µ(x) is to represent a degree of belonging to the subset of R. The Linear Fuzzy Real numbers as described by Neggers and Kim (2001) is a triple of real numbers (a,b,c) where a	≤ b	≤ c	of real numbers, See Fig. 1, such that: 

µ(x) = 1 if x	= b; 
µ(x) = 0 if x	≤ a	or x	≥ c;  
µ(x) = (x	− a)/ (b	− a) if a	<	x	<	b; 
µ(x) = (c	− x)/	(c	− b) if b	<	x	<	c. For a real number c, we let ߳(ܿ) = 	,with associated triple (c ߤ  c,	 c). Then µ	 is a linear fuzzy real number with µ(c) = 1 and µ(x) = 0 otherwise. As a linear 
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(α,	 β,	 γ). The solution set of the general linear equation can be roughly classified as 1. Empty set, 2. singleton set, 3. not a singleton set but a bounded set: ߚଵ ≤ ߙ  ≤ ߚ  ≤ ߛ  ≤ ,ଵߚ ݎ݂ ଶߚ  ଶߚ ∈ ܴ,, 4. an unbounded set but not all LFR’s are included, 5. all possible LFR’s are included. A solution set that is bounded but not a singleton would imply that µx	is not equal to the solution set in a crisp sense. Solving these equations through traditional means can be a daunting task. If we define a relation µ1 ≡ µ2 (mod θ) iff µ1 −µ2 is zeroic, then ߤ (ܽ, ܾ, ܿ)  ≡ ,ܽ) ߤ since (ߠ ݀݉) (ܾ)߳  ܾ, ܿ) − ߳(ܾ) = ܽ)ߤ  − ܾ, 0, ܿ − ܾ). Therefore if we define [ߤଵ ] = ଶߤ|ଶߤ} ≡ 	then [µ ,(ߠ ݀݉)ଵߤ  (a,	b,	 c)] = [߳(ܾ)]. Furthermore, in order that ߳(ܽ) (ܽ)߳ we must have ,(ߠ ݀݉)(ܾ) ߳ ≡ − ߳(ܾ) = ߳(ܽ − ܾ) zeroic, which can only happen if a	 = b. Hence, we have a mapping Φ: µ	 → [µ] with the property that if we compose this with the mapping ܾ →  ߳(ܾ) then we obtain the sequence ܴఢ→ ܴܨܮ ఝ→ 	where Z ,ܼ/ܴܨܮ is the set of zeroic elements of LFR, whence LFR/Z	 is seen to be isomorphic to itself. If: Z	 → LFR	 is the inclusion mapping and then we obtain a further diagram:  ܼ ఙ→ ܴܨܮ ఝ→ ܼ/ܴܨܮ ఢ→ ߤ] Thus .ܴܨܮ ∗ [ଵିߤ  = [ߤ] ∗ [ଵିߤ] =  ߳(1), i.e., [µ] has a multiplicative inverse in LFR/Z. The properties of 
LFR/Z	 allow one to solve for the solution of fuzzy linear equations using the inverse order of operations. 
9.	Linear	congruence	in	an	LFZ	environment	It has been shown by Neggers (2007) that arithmetic operations upon elements of LFR increase the area of =	 µ (ai,	 bi,	 ci). This is also known as overestimation. It is a phenomenon typical of fuzzy operations. The overestimation effect is responsible for a more or less large discrepancy between the arithmetical solution of a problem and the calculated one. In an effort to avoid this, a combination of LFZ/Z unique properties and a re-imagining of the problem are implemented in some cases. 
10.	 Crisp	 greatest	 common	 divisor	 and	 its	
applications	Because of overestimation we will define the Crisp GCD of LFZ,	CGCD, as d = ߳(ܾ) such that d |	µi =	
µ(ai,	bi,	ci) i= 1,2,3,4,5…and if there is an element w ≥ ݀ ܽ݊݀ w | µi =	µ(ai,	bi,	ci) i= 1,2,3,4,5… then d = w. The CGCD will essentially be the GCD of ߳(ܾ) for a given set of LFZ numbers. Note that for d|µ (ai,	bi,	ci) where a, b, c, and d > 0 in LFZ, yields as expected in integer division.  ߤ ൭݂݈ݎ ቀܽ݀ቁ , ܾ݀ ,  ቀܿ݀ቁ൱,  Proposition 1: If d divides µa and µb then d divides ݎ݈݂
µa	*µx + µb	*µy  for all LFZ 

Proof: If d divides µa then µa = µm *d, likewise for 
µb. Then it follows that  

µa	 *µx + µb	 *µy = µm *d*	 µx + µn *d*	 µy. Thus d divides µa	*µx + µb	*µy  for all LFZ.□ Proposition 2: Let µa and µb be LFZ (not both zeroic) with CGCD d. Then an LFZ µc has the form µa	
*µx + µb	*µy  for some µx , µy  ∈ LFZ iff µc is a multiple of d.  Proof: If µc = µa	*µx + µb	 *µy  where µx ,	µy ∈ LFZ then since d divides µa and µb, Proposition 1 implies that d divides µc.  Proposition 2 implies that µc = µa	*µx + µb	*µy has a Linear Fuzzy Integer solution if and only if d|	µc. Let us observer the equation µc = µa	* ߳(ݔ)0 + µb	
and define ఓௗೌ 0(ݕ)߳ * = ఈ  and ఓௗ್ߤ  =   = 0(ݕ)߳ *	µb + 0(ݔ)߳ *	µa	*µy  =	*µx + µb	where t is any crisp integer, then µa ݐ ఈߤ- 0(ݕ)߳ = and µy ݐ ఉߤ+ 0(ݔ)߳ = ఉ .  If we set  µxߤ 
µc therefore µx , µy is also a solution. This gives us infinitely many solutions for different integer's t. 
11.	Fuzzy	Diophantine	linear	equations	Before discussing congruence, we must also discuss the Fuzzy Diophantine equations. They are equations of one or more variables, for which we seek integer solutions. One of the simplest of these is the Fuzzy Linear Diophantine equation µc = µa	*µx + 
µb	 *µy. Derived from this is Bezout’s identity d = µa	
*µx + µb	 *µy. In fact, dividing by d, and defining ఓௗೌ = ఈ and ఓௗ್ߤ  =   is	 ఉ*µyߤ + ఈ*µxߤ = ఉ*µy. It follows that a fuzzy solution to  ߳(1)ߤ + ఈ*µxߤ = ఉ produces the equation ߳(1)ߤ 

µx = ߳(ݔ)ߤ + 0௬ݐ and µy = ߳(ݕ)ߤ - 0௫ݐ.  The Fuzzy Diophantine problem requires that the solution µx as well as µ1, µ2, µ3 and µ4 be elements such that µi =	µ (ai,	bi,	ci) implies that ai,	bi,	ci ∈ ܼ for i	
=	1,	2,	3,	4.	Thus µ (a,	b,	c) ∈ 	is an integral LFR and behaves much like Z ܼܨܮ in	 R.	 The mapping ܼ ఙ→ ܼܨܮ ఝ→ ܼ/ܼܨܮ ఢ→  .where Z is the set of Zeroic elements and LFZ is the set of Linear Fuzzy Integers yields the same properties as the mapping of LFR/Z ,ܼܨܮ
12.	Fuzzy	linear	congruence	Congruence or in particular, fuzzy linear congruence has the form µa * µx ≡ µb mod (µn) where 
µx is an unknown linear fuzzy integer. As is true of the crisp version of modulo congruence this also implies that µn	divides the quantity (µa * µx - µb). Proposition 3: If d = gcd (µa, µn) then the fuzzy linear congruence is µa * µx ≡ µb mod (µn) has a solution if and only if d divides µb and if ߳(ݔ)0 is any solution then the general solution is given by µx = ߳(ݔ)0 + ఓௗ 	Where t is an integer and the solution form exactly d congruence classes' mod (µn). Proof: This is equivalent to the Fuzzy Linear Diophantine Equation µb = µa .ݐ *µx - µn	 *µy thus µx = ߳(ݔ)ߤ + 0ఈݐ and µy = ߳(ݕ)ߤ - 0ఉݐ where: ఓௗ = ఈ and ఓௗೌߤ  =  ଶ modݐఈߤ + 0(ݔ)߳ ≡ ଵݐఈߤ + 0(ݔ)߳ ,ఉ ; note thatߤ 
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(µn), if µn divides ߤఈ (ݐଵ − ଶ). Since ఓௗݐ = ଵݐ) ఈ we arrive at the necessary statement d dividesߤ  − ଵݐ) ଶ). This can only occur is ifݐ −  .ଶ) a multiple of d is. So the congruence classes of solutions mod (µn) are obtained by letting t range over a complete set of residues mod (d)ݐ
13.	 Examples	 of	 the	 solutions	 of	 fuzzy	 linear	
congruence	 with	 linear	 fuzzy	 integer	
components	The following examples illustrate the solutions of linear congruences in a LFZ environment.  Example 1  Solve 5*µx ≡	µ	(6,	7,	8)*Mod	[µ(7,	8,	9)]  Where d = 1. A reasonable ߳(ݔ)0 is 3.  Note: [5*(3) - µ (6,	7,	8)]	÷	µ (7,	8,	9)	=	[µ (15, 15,	15) + µ (-8,	‐7,	‐6)] ÷	µ	(7,	8,	9) = [µ (7,	8,	9)] ÷	µ	(7,	8,	9). Thus µx = 3+ [µ (7,	 8,	 9)]/1 implies that µx ≡ 3 mod [µ	(7,	8,	9)]. Example 2  Solve 5*µx ≡	6*Mod	[µ (17,	19,	20)] Where again d = 1. Let’s suppose that a possible ߳(ݔ)0 is not obvious. We can use tradition Number Theory techniques to solve for an answer. Let us change the coefficient by adding multiples of µn. 6≡5*µx ≡	µ (22,	24,	25)]	*	µx	Mod	[µ (17,	19,	20)] 6 ≡	µ (22,	24,	25)	*	µx	Mod	[µ (17,	19,	20)] 1≡	µ (3,	4,	4)	*	µx	Mod	[µ (17,	19,	20)], note that the LFZ µ (a,	b,	b) or µ (b,	b,	c) is a right triangular fuzzy number or LFZ. Here 5 are a reasonable ߳(ݔ)0. Thus µx ≡ 5 mod [µ	(17,	19,	20)]. Traditional number theory techniques such as the Euclidean Algorithm can also be used to solve LFZ linear congruences.  Example 3 Solve µ (12,	13,	13)*µx ≡ -1 mod [µ	(13,	14,	14)]. Using the Euclidean Algorithm on the respective ߳(ܾ) values 13 and 14, we find that a reasonable ߳(ݔ)0 is 1 and thus µx ≡ 1 mod [µ (13,	14,	14)]. 
14.	Conclusion	We can find an interval solution by projecting the upper and lower bound µ (a,	b,	 c) → [ܽ, ܿ]. We can find a crisp solution by projecting to the middle, µ	(a,	
b,	c) → ߳(ܾ). At the same time the method outlined produces a fuzzy solution in the form of an LFZ	expression, which can be used directly as a fuzzy 

value or a fuzzy interval. In the future, LFZ may be used in cryptography to ensure stronger security. In cryptographic systems the messages can be encrypted using linear congruences in mere moments on a computer. Using linear congruences in LFZ for encryption is possible as well. For example, if X is the digital version of a plaintext letter and Y is the digital version of the corresponding ciphertext letter, then perhaps X and Y can be hidden in an LFZ triplet and coded via µx ≡ µy + 3 mod [µ	(25,	26,	26)]. A possibility here is a fuzzy Caesar Cipher where X and Y are hidden as upper bounds of the LFZ. Projecting to the middle is mathematically safer, but the upper or lower bound calculations may provide greater security. This of course, requires more study. However, it is a future goal to explore the possibility of using LFZ in the encryption processes to include the RSA and IBE cryptosystem. 
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